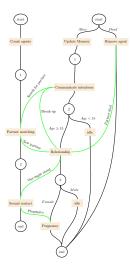
The SILAS model: Demographics dggö-Jahrestagung 2015

Stefan Scholz, Manuel Batram, Prof. Dr. Wolfgang Greiner

Universität Bielefeld

16.03.2015



Infectious Disease Modeling

- State of the art in modeling infectious diseases are dynamic transmission models
- Mixing or contact patterns are incorporated via contact matrices, giving the mean number of contacts between all age-groups
- Extensive calibration may be necessary for models to produce observed prevalences or incidences
- ➤ Thinking of the spread of HIV at the beginning of the pandemic in the US, the mean contact rate would not have represented the number of contacts of patient 0 (a flight attendant)

The SILAS model: Overview

The SILAS model: Demographic module

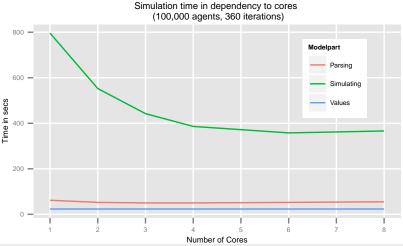
- ► Age- and sex-specific mortality rates
- ▶ Births are result of sexual contacts (see social module) under consideration of age-specific probabilities of:
 - Fertile phases of women
 - Conception during the fertile phase
 - Induced and spontaneous abortions
 - STI-protecting and non-STI-protecting contraception
- No migration

The SILAS model: Social/relationship module

- Age- and sex-specific rates of relationships
- Age-, sex- and sexual orientation-specific probabilities of forming and ending relationships (2-parameter Weibull distributions)
- Assumed probability of unfaithful behavior
- Age-, sex- and sexual orientation-specific probabilities for daily sexual contact of singles and couples (4-parameter beta-distributions)
- Age-, sex- and sexual orientation-specific probabilities for mode of contraception of singles and couples (multinomial-logit models)

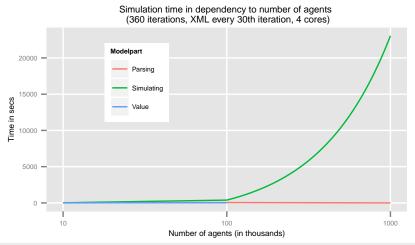
The SILAS model: Data sources

- ▶ PAIRFAM panel dataset: 6 waves of three age cohorts
- ▶ DESTATIS: Parameters of total German population
- Literature on parameters of fertility

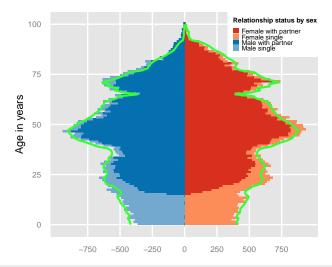


The SILAS model: Technicalities

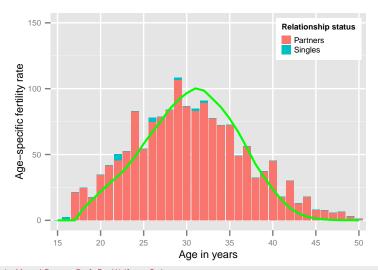
- ► FLAME-framework on Ubuntu, Intel Xeon 3.3 GHz x 8 (4 physical) cores, 16GB RAM, HDD, openmpi
- Python based GUI for creation of starting population with following functions:
 - Class-based AgentMaker creating agents value sets including creating paired agents using the Law of Total Probability
 - xmlMaker for wrapping values sets in XML-tags
 - Multi-core parser for transformation of XML-files in CSV



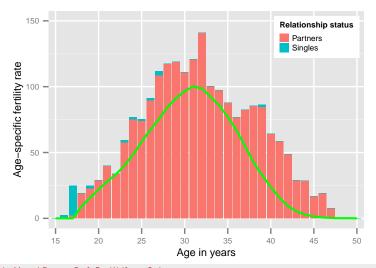
Performance No. of cores



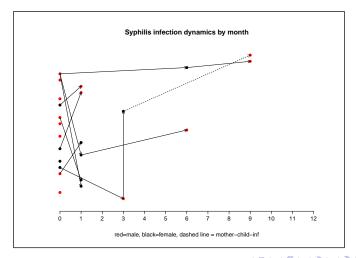
Performance No. of agents

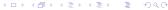


Demographics: Age structure 0-population



Demographics: Fertility of first year




Demographics: Fertility of second year

Epidemiological results

Pros and Cons of ABM

Pros:

- Inclusion of major factors in heterogeneity (age, sex, education, etc.)
- ▶ Inclusion of extreme cases
- Easier implementation of quantitative, regression-based research
- Few assumptions, single behavior rules easy to communicate

Cons:

- Computationally intensive
- Reporting becomes harder, the more behavior rules are implemented
- No standard software, no standard reporting scheme

Planned extensions

Extensions to SILAS:

- Regional distribution of agents (16 federal states)
- Other STIs (HIV, Hep B, HPV) in addition to syphilis
- Migrate to cluster (e.g. AWS) to scale model size

Other ABM-projects:

Competition in the market of statutory sickness funds (GKV)

Thank you very much for your attention!

Contact:

Stefan Scholz Faculty of Public Health stefan.scholz@uni-bielefeld.de 0521 / 106-2648

Please visit silas-model.com for more information.

Back-up: GUI

Back-up: GLM-example

	Single-time to first relationship	Single-time to next relationship
μ		
Intercept	2.956 (.003)***	192 (.062)**
Male	.075 (.005)***	.315 (.023)***
Homosexual	` '	162 (.165)
Interaction (male:homosexual)		178 (.268)
Interaction (age:duration) last relationship		.005 (.001)***
ps(Age at end of last relationship)		.025 (.003)***
ps(Duration of last relationship)		161 (.023)***
σ		. ,
Intercept	1.468 (.008)***	.088 (.031)**
Male	049 (.012)***	019 (.015)
Homosexual	` '	057 (.094)
Interaction (male:homosexual)		.011 (.156)
ps(Age at end of last relationship)		016 (.002)***
ps(Duration of last relationship)		017 (.003)***
Num. obs.	11655	16609
Nagelkerke R ²	.997	.934
Generalized AIC	67392.305	38706.857

^{***} p < 0.001, ** p < 0.01, * p < 0.05

